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The restricted circular three-body problem is considered. In this problem two massive bodies, simulated by point masses with 
masses of unity and u, move in specified circular orbits around a common centre of mass, while a third body of small mass, simulated 
by a viscoelastic deformable sphere, has no effect on the motion of the first two and moves in a gravitational field generated 
by the first two bodies. The scattering of energy when the viscoelastic sphere is deformed leads to the evolution of its orbit and 
of the angular velocity of motion. In the development of previous results [I] a system of equations is obtained taking into 
account the second approximation with respect to the small parameter u, describing the total pattern of the evolution of the 
motion of the viscoelastic sphere in the restricted circular three-body problem. 0 2003 Elsevier Science Ltd. All rights reserved. 

Suppose two point masses MI and M2, whose masses are equal to unity and ~1 (p < l), move in circular 
orbits under the action of Newtonian gravitation around a common centre of mass 0 in the OXYplane. 
Suppose OA42 = b and OMt = M, while the angle c1 between the OX axis and the radius vector OM, 
of the point M2 varies as 

a(r)= u3t -+a(O), 03 = 
d 

f 
l+cL 2 

where f is the gravitational constant (Fig. 1). 
We will further assume that the centre of mass C of the sphere (everywhere, unless otherwise stated, 

we have in mind a viscoelastic deformable uniform sphere) of mass m and density p moves in the OXY 
plane, and R is the radius vector of the point C. The position of points of the sphere is determined by 
the vector field 

Ur, 0 = R(r) + W(r + u(r, 0) 

R(r) = ij&(r, r)pdr, j udx = 0, j rot udx = 0, dr = dx,dr,dr, (1) 

and everywhere henceforth, unless otherwise stated, the integration is carried out over the region 
I/ = {r: 1 r 1 c ro} in E3, occupied by the sphere in the natural underformed state. 

Conditions (1) uniquely define the radius vector R(r) of the centre of mass C of the deformed sphere 
and the system of coordinates CX~X~X~, relative to which the sphere does not rotate in the integral sense 
[2]. The operator O(r) = O(cp(r)) determines the transition from the system of coordinates CX~X~X~ to 
the system of Konig axes C515&,3 and has the form 

cos cp -sincp 0 
O(q)= sincp coscp 0 

0 0 1 

The kinetic energy of the sphere is represented by the functional 

T=~IS2pdr=~I[O-1~+wx(r+u)+u]2pdn; co=(be3, e3 =(O,O,l) 

where w is the angular velocity vector defined by the equality o x (.) = O-Id(.). 
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Fg. I 

Taking conditions (1) into account the functional of the kinetic energy can be represented in the form 
of the sum 

T=T,+T,+T, 

T,=3mR2+~~~2[~lx(~+u)]2pdr, T,=j(Cpe,x(r+u),U)p&, r,=+Jti2pm 

The functional of the potential energy has the form 

where 
R, =M,C=R+pbe, R, =M,C=R-be, e=(cosa,sina,O) 

%[u] is the functional of the potential energy of elastic deformations, corresponding to the classical theory 
of elasticity of small deformations, 

~:[Ul= la ~ eii i( ) 
2 

3 -0;c (eiiejj-e;, d.x, a>o, o<a;<3 
i=l i<j 

1 

E(1 -v) 
a= 

a’ = Xl- 2v) 
2(1+v)(l-24 ’ l-v ’ 

E is Young’s modulus of elasticity and v is Poisson’s ratio. 
Since 1 Rk 1 >> 1 r + u 1 (k = 1, 2), the integrands in Eq. (2) can be expanded in series. Confining 

ourselves to terms of the second order in powers of 1 r + u (/Rk and linear in I u I /&, where Rk = I & ) 
(k = 1,2), we obtain 

++,u)-~(O-~R 20~W+R204W75 + ‘%[ul 



Slow dissipative evolution of the motion of a viscoelastic sphere 747 

R,,=R,/R,, k=1,2 

R, = R2+2pRbcos@+p2b2, R2 =dR2 -2RbcosO+b2, R=IRI 

where Cp is the angle between the vectors OC and OM,. 
We will write the equations of motion in the form Routh equations, using the Poincare-Andoyer 

canonical variables, which define the motion of the centre of mass of the sphere and its rotation about 
the Cx3 axis, and the Lagrangian variables ul(r, t), uz(r, t), u3(r, t), which describe the deformations. 
Here we will confine ourselves to considering the class of quasi-circular orbits, i.e. orbits with zero 
eccentricity. It has been shown [l] that such a class of motions exists. 

The Andoyer variable I, equal to the modulus of the angular momentum vector of the sphere about 
the point C, taken with a plus sign in the case of direct rotation and with a minus sign in the case of 
inverse rotation, is given by the equation 

where 

I = ViT = J[u]+ + G” 

J[u]=j[e3 x(r+u)]2pdx, G” =(e,, j[(r+u)xti]pdr) 

The length of the vector R and the angle it makes with the OX axis, in Poincare variables (A, h) for 
the class of quasicircular orbits is defined by the following relations [l, 31 

R=A2(jin2)-‘, h=@+a 

The Routh functional is defined by the equation 

and is represented in Andoyer-Poincare variables in the form [l] 

9t=[I,h,cp,hi,u,a]= 
(I-G”)2 f2m3 1 .* 

2J[u] 2A2 
---+ pdx+M~.~R,@,P,ul+Qul 

where 

R = A2(jin2)-‘, 0=1-a, P=h-cp 

H[~,R,~B,~,u]= F, +I{~(r,u)-F2(50,r)(50, u)- ~[(S0.r)(5’,U)+(5’,r)(~0,U)1- 

-F4(5,,r)(S1,u)W (3) 

to = O-‘R, = (cosp, sin p, 0), (;, = O-‘e = (cos(p - 0). sin@ - a), 0) 

4 =F;(p,R,@), i=O,1,2,3,4 

The equations of motion of the sphere have the form (everywhere henceforth the subscripts cp, p, h, 
etc. denote partial derivatives with respect to the corresponding variables) 

i=-3, =-H, =H,, A=-$& c--H, =--&,-HP 

2 3 
C&g?+--- w3 -fm +H,- w3 

l+p A3 
--, fj=~,-+~-~+H, 

-$V;91+V,%+V,D+X, h+X,roth =0, V&IE(W~(V))~ 1 
(4) 

Here (W#‘))’ is the Sobolev space, D[ir] = x%[ir] is the dissipative functional and x > 0 is the coefficient 
of internal viscous friction (the Kelvin-Veight model). The last equation is written in the form of the 
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d’Alembert-Lagrange variational principle and contains two undetermined multipliers hi(t) and A*(t), 
generated by conditions (1). 

We will assume that the lowest frequency of natural oscillations of the sphere is much greater than 
the angular velocities <p and w3. This means that, by an appropriate choice of the scales of the dimensional 
quantities, the numerical value of the elasticity modulus of the material of the sphere E will be high, 
while the parameter E = E-i is small. 

If E = 0, we have u(r, t) = 0, and Eqs (4) will look as follows: 

where 

o,=-L 
2 3 fm *’ 02=-p 03 = (6) 

and.4 is the moment of inertia of the undeformed sphere about the Cxs axis. Equations (5) described 
the motion of the sphere as a rigid body in the classical restricted three-body problem in the class of 
quasi-circular orbits. 

If E f 0, according to the method of separation of motions [2] after the natural oscillations of the 
sphere have decayed, the solution u(r, t) is sought in the form 

u(r,t)=Eu,(r,t)+... 

The function ul(r, t), obtained earlier in [I], can be represented in the form of the sum 

where 

Here 

"lj0 =a,(Bj_,,r,r)r+a,r2Bj_,r+a~Bj_lr. j =2,3 

d = (i+v)(i-2v), 
I 2(4 - 3v) 

d --(3-v)(1-2~)~. 
2' 2(4 - 3v) 

l+v (1 + v)(2 + v) 
al==, a2=- 5v+7 ’ a3= 

(I+ v)(2v + 3) r. 
5v+7 

4 = diw 11,L - 21, B2 = 11 bc lli,j=1,2,3 

bii = $4 +(-1)‘+‘(4 cos2p+2F, cos(2p-@)+ F4 cos(2B-2(D))], i=l,2 

b 12 = b21 =f[F2sin2b+2F,sin(2p-0)+ F,sin(2P-2@)] 

q3=--&, b,3=b3,=b23=b32=0 

(8) 

(9) 

(10) 

The matrices of the operators Bi and Bz are symmetrical matrices with zero trace, where 

The function u13 is represented by the first two terms of the power series in x, assuming that ] xw, ] < 1 
(k = 1, 2, 3). Differentiation with respect to time in the expression for the function u13 is carried by 
virtue of the “unperturbed” system (5). 
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The solution u = Err1 = s(uii + u12 + u13) describes forced oscillations of the sphere. According to 
the asymptotic method of separation of the motions it is further necessary to substitute this solution 
into the right-hand sides of Eqs (4), first linearizing them with respect to u and U. Note that the functional 
H, defined by (3) according to expressions (11) can be represented as follows: 

H = F, -j(lQ,u)d.x 

The system of equations describing the translational-rotational motion of the sphere, taking into 
account the perturbations connected with the elasticity and dissipation, then takes the form 

i = -j(B2pr,cu,)dr, A = -Fo*+I(~,r,&ul)dx+I(Bzpr,Eu,)dr 

h.0, -%+Fo, -jU$,r,m,)dx 
1+/J 

p=0, -64 +-$e3,jrxai,pdr)+FoA -I<& .r,qW+ 

+21Ae2 j [(r, &uI ) - (e,, r&, ml )Ipdr 

(12) 

The function u1 is defined by (7). 
The next step is to evaluate the triple integrals over the region Van the right-hand sides of Eqs (12) 

and obtain a closed system of ordinary differential equations in the variables I, A, @ and fi. We will 
formulate assertions which enable this procedure to be simplified considerably. 

Lemma 1. If B is a symmetrical matrix with zero trace, the elements of which are independent of r, 
and u = k(d,r* + d2)r (k is a certain multiplier which is independent of r, while the constants d, and 
d2 are defined by (8)) then 

j(Br,u)dr =0 

Lemma 2. If B and C are symmetrical matrices with zero trace, the elements of which are independent 
of r, and u = k[al(Cr, r)r + a2r2Cr + a3Cr] (k is a certain factor independent of r, while the constants 
al, a2 and a3 are defined by (9)) then 

j (Br, u)& = kD2 tr[ BC], 4 = 4r’:&fIi)i ’ 3, 

where tr[BC] is the trace of the product of matrices B and C. 

Lemmas 1 and 2 are proved by direct evaluation of the integrals over the sphere. 
System of equations (12) after the above calculations have been carried out, can be represented in 

the form 

i = qD2{Tppp, + Twb, + ThiJ 

i =-i+ -F. +&D,po;F; +;eD2T 
-I 

- qD2(TaBfi, + T@%, + T’“li,) 
@ 

C&W,-A!!L 
l+cL 

-+D2T +qD2{TApf!, + T*%, + T”i,) 
A 

+D2T + qD2(ThSp. + T*‘%* + T”‘%,) + 
A 

+2&p 2 A’ $0;(24 + D2>+ D2[F, -xF,,& -xF;,,i.l 

(13) 

(14) 
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Here 
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b 
Slrr; (1 - 2v) 

r=q -o,+Fo,, c&,,,-%+~~~, A,=-40, 4 = 
1+c1 105 

T = tr[@], TpB = tr[B&B], Tp’ = tr[B,&,,] etc. 

Using formulae (lo), we obtain 

TpB = 2[9e2 +4(e2 - F2F,)sin2 01 

Tw = +2(F,F3, - F,F,, + F,F,, - F,F,,)sinQ,+2Fi + 

+(F2Fbcp - F,F2,)sin2@+2t$(&cos0+ F,cos2@)+4Fj +6F,F,coscP] 

TpA = -[2( F2 F3,, - F3F2h +&F4,, - F,F,,)sinO+(F2F,, - F4F2,,)sin2@] 

T@@ +&j2 +;(F2m)2+2(FJa)2 +;(Fde)2 +2F,2 +2F,‘+ 

+2 F2*( Fj cos @)O + F2*( F4 cos 2@), + 2 FaQ, (F,, cos 0 + FJ sin 0) + 

+4F,(F,cosQ,- Fs*sin@) 

+i(F,,F,, + F,,F,,)cos24,+ FJsin@(F4,, - F2,)+(F3~F4,, + FshF4~)cos@- 

-2F,sit1@(F~~cos@+ F,,) 

TM =;(F,,)2 +;(GA)2 +2(F,,)2 ++(FdA)’ + 

+2(F2,,FSh + FSAF4,,)cosQ)+ F2AF4h ~0~24, 

The functions Fi(i = 0, 1, . . . ,4) depend on the variables A and Q and are independent of the variable 
0. Hence, the right-hand sides of Eqs (13) and (14) are also independent of the variable p. System of 
equations (13) is a closed system of ordinary differential equations in the variables I, A and @‘, containing 
the small parameters E and u, while Eq. (14) is separated from system (13) and can be integrated after 
determining the functions I, A and @ (as functions of time) from system (13). 

We will further consider system of equations (13) as a system with a small parameter u for a fixed 
value of the parameter E. 

When u = 0 we obtain 

i = l81@2~~0~(02 -or), A =-~~ExD~P~w~(cII~ -WI) (15) 

& = co2 - o3 + 6~D,p~A-‘&o; + 60:) (lh) 

The quantities or, o2 and os are defined by formulae (6). Note that the right-hand sides of Eqs (15) 
and (16) are independent of the angular variables. 

The solution of system of equations (13) will be sought in the form [4] 

I = J, +ph’,, +p’N,, + . . . . A= J2 +pN2, +p2N2, +... 

@=yJ+p.M,+p2M,+... (17) 

where the function Nik = N;#, w), Mk = Mk(J, W) (i = 1,2, k = 1,2, .) are 2n-periodic in the variable 
w and have zero mean with respect to this variable, and .I = (Jr, Jz). 
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As a function of time, Jr, J2, w are given by the differential equations 

J, =A,,(J)+CIA,,(J)+CL*A,,(J)+... 

4 = A,,(J)+CIA,,(J)+CL*A,,(J)+... (18) 

+=o(J)+pB,(J)+~*B;!(J)+... 

We will expand the functions Fi(i = 0, 1, . . . ,4) in series in powers of the small parameter p. Confining 
ourselves to terms of the second order of smallness in u, we obtained 

F, = clfol + CL*.629 F; =fio +pfi, +P*&, 4 =fzo +cLfa +l*fx 

FJ =pf3, +P*fjz, F4 =I&41 +P*f42 

where 

fo, =Ao,(qcos~-p), fo* +q*(l-3cos2@) 

A0 = P49 * f;l =w*(P 3-3qcos@), 3P4 2 fi* =2q (5cos2@-1) 

15P4 2 f*o =3po;, f2, =3pL-&p’-5qcos@), f*z =2q (7cos2&-1) (19) 

f3* = 3pfJ$q(l -/I’), f3* = -15po;q* COSQ 

f41 = 3po,2q2p5, f4* = 3pw;q* 
213 

Substituting expansions (17) and (18) into Eq. (13) and equating coefficients of like powers of the 
small parameter u, we obtain a system of equations which determines the unknown functions Ark, Ax, 
Bk, Nlk, N,, Mk (k = 1, 2, . . .). The functions Alo( A&J) and o(J) of the zeroth approximation in 
the small parameter u have the form 

A,,(J) =-A20(J)= I~E@~P*o~(w~ - ~1) 

O(J) = 02 - ~3 + ~ED~P*A-‘o~(o~ + 60:) 

where the variables I and A are replaced by the variables Jr and Jz respectively in the expressions for 
or and oz. 

The system of differential equations of the zeroth approximation with respect to the small parameter 
u in the variables Jr and J2 has the form 

-‘I = A,,(J), J, = A20(J) (20) 

and describes the motion of a sphere in a central Newtonian force field in the class of quasi-circular 
orbits (the class of motions when the rotation of the sphere occurs about the normal to the plane of 
the orbit is considered). System of equations (20) has an asymptotically stable stationary solution, 
corresponding to gravitational stabilization of this sphere in a circular orbit with centre at the point 0 
(which coincides with the point MI in the zeroth approximation with respect to p). The radius R. of 
this orbit is given by the system of equations 

Jl + J2 =G,, J,lA= f2m31J; (21) 

Here Go is the angular momentum of the sphere about the point 0, which remains unchanged in the 
zeroth approximation with respect to the small parameter p. When the inequality 
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Go > 4/:(3Af*t1?)“~ 

is satisfied, system of equations (21) has two solutions (J1r,JzI) and (Ji?, .&) (J?i < J12). The asymptotically 
stable stationary solution of system of equations (20) corresponds to the larger value Jz2. Hence 

R,, = f2m3 I J;* 

In the y-neighbourhood of this stationary solution, it is necessary to take into account the following 
approximation with respect to u in expansions (18). Assuming 

A,,(J) = wA,(J)~ 40(J) = -w%(J) 

we will write the system of equations which determine the unknown functions Ai,, Azl, Nr,, Nz, and 
Mi of the first approximation with respect to the small parameter p. 

4, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -03)) 

A21 + N,,,o = (-fo, +&4Q, Iv - 

-Ex4Wfi~fo1,2 -(2f20~rsin~+f20f41sin2W)yl(02 -WI (24 

4 +4y~=yJ% +a.+‘21 +o,+(fo, -&4Q,l,2 + 

+&XQ(f2o,2(2fi1 -f41 sin* w)(% -~3)-6f01(fio,2)21~ 

where 

Q, = w#f,, + 3f,o(2.h, - f41 sin* ‘+‘I 

while in the functionsflk the variables A and CD are replaced by the variables J2 and w respectively. The 
subscript i (i = 1,2) after the comma denotes a partial derivative with respect to Ji:fol,2 = dfol/dJ,, etc. 

The functions A,, and AZ1 of the first approximation with respect to the small parameter u, which 
define the evolution of the action variables, have the form 

Aii = 18(-1)i”~D2ft~(foi,2), i = l,2 

where 

When q = 1 the integral defining the function a(q) diverges. When q < 1, i.e. for outer orbits of the 
sphere, the function u(q) takes positive values, and when q > 1, i.e. for inner orbits of the sphere, the 
function u(q) takes negative values. 

Approximate equations describing the evolution of the variables I and A, taking into account terms 
of the first approximation with respect to the small parameter u, have the form 

.ii = 18(-1)‘+‘~x4p20~((02 -w,)+2p02a(q)), i = 1,2 (23) 

It follows from system (23) that ji + j2 = 0, i.e. the angular momentum Go about the point 0 is also 
conserved in the first approximation with respect to the small parameter u. System of equations (23) 
like system (20), possesses an asymptotically stable solution, corresponding to the motion of the sphere 
for which its centre of mass moves in an orbit of radius R,, which differs from Ro, with angular velocity 

WI = w,(l + 2Pd9)) (24) 

It follows from the properties of the function u(q) and from the fact that in Eqs (23) the angular 
momentum Go is conserved, that the stationary orbit of radius R, is shifted only slightly with respect 
to the orbit of a body of mass u compared with the orbit of radius Ro, obtained in the zeroth 
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approximation with respect to the small parameter lo, Hence, at the first stage of the slow dissipative 
evolution, which occurs at a rate of EX~, the radius of the quasi-circular orbit of the sphere, which is 
inside the orbit of the body of mass p, increases, while the radius of the quasi-circular orbit of the sphere, 
situated outside the orbit of the body of mass n, decreases, tending to its new stationary value RI. 

When the sphere moves in an orbit of radius RI with an angular velocity given by expression (24), a 
further loss of energy occurs. In the p*-neighbourhood of this attractor the following approximation 
with respect to ~1 must be taken into account in expansions (18). 

Assuming 

A&)+ j.u$,(J) = (-1)‘+‘&~*&‘), i = 1,2 

we obtain the sum of the functions A i*(J) and A2r(J) of the second approximation with respect to the 
small parameter p; this sum defines the evolution of the kinetic moment GO. The corresponding equation 
of the second approximation has the form 

A,, +A,, +U”,,., +~2,.1b411 +VII., +N21.*lA21 +(hly + ~2lyM + Vl2y + &2@3 = 

= -aI - E4Ql )+q# M, - (fol - a2Q1 Jv.2 N21+ W’ZQI )y.l NII - 

-~x~dfo~.2KGd3~ sinv +f20h sinW3, +(--A32 +a2Qdv + 

+exD2(W20f31 sin w +f20f4~ sinWvfol,2 +f20,&J2fi1 -AI sin* Wlvl - (25) 

+(.f41 cos2w)y)+2f41y(f31y cosw+f31 sinW+4f41V31 CosW -f&, WOW2 -03) 

where 

Q2 =POffi2 +3A: +6fioA2 +(hi -ho&2 -.hf41)~~~* \Y 

while in the functionsfjk the variables A and CD are replaced by the variables J2 and w respectively. 
Since the average of the functions NV is equal to zero, to determine the sum of the functionsAi2(J) 

andA2*(J) it is necessary to average the right-hand side of (25) with respect to the variable w. 
Terms on the right-hand side of (25) containing coefficients of the function of the first 

approximation Nii, N2r and M1 can be converted as follows: 

KJ,V) = -WNv> 

Hence, expressing the derivatives Nil,+,, NZI,+,, M,,,, of the system of equations of the first approximation 
(22) and taking equalities (19) into account, we obtain 

A,, + A,, = 18&~4p*o;b(q) 

where 

&a = (4 (49 WI + h cc?* w) + h,(q. w) - h,(q, WI - 4 (49 WN 

+I 
312 

w.w)+my-pwP) 
9 

~,(q,yO=p3~l-qcosyr)-2qcosyf 

{ 

% 
312 

h2 (4* w = 40, (4, WI + 3/2 
9 

-l(qcosyI-p) (5q*p’(l-qcosy)sin*y+ 
1 

+q(1-p5)c0s~+q2p5c0s2yf) 

h3(q,v)=6q2(1- p3)(2(1 - p5 -qp5cosy)+5q2p7 sin* yr)sin* \y 
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312 

h4(440=~ 
4 

_ 1 q2(1 - p3)2 sin2 v 

s 
M*v) = (l- 9-3’*)kz, g&&v) 

L?lh VI = $q2(3(1 - ps)* +25(1- p7)2 + 100q2p’4 +25q4p’4)sin2 v 

~2~q~v~=q2~~-p5~2+q4p’o 

t?3(q,V)=5q2U - P7)kp5(5P2 -2)cosy+p’ -1 -Wq2p7 cos2v)sin2 v 

g4(q,~)=-5q4p7(5qp7cos~+1-~S]~in2~ 

&(q,V)=2q3p5{(1-pS)cosv-5qp7sin2v) 

Graphs of the function b(q) for q c 1 and q > 1 are shown in Fig. 2. For q < 1 (for outer orbits of 
the sphere) the function b(q) is positive, and for q > 1 (for inner orbits of the sphere) it is negative. 

At the second stage of the slow evolution the following relations hold 

J, = Af 2m3J;3 + O(p), 5; = fm*bq-’ + O(p) 

from which we obtain, apart from small terms of the order of u, a relation between the average value 
of the kinetic moment Go = J, + J2 and q in the form 

Go(q)= m(fb/q)“2 + Af”2(b/q)-3’2, q < q, = bm”2(3A)-“2 (26) 

The value of q must be chosen to be less than q” (q* is the point where the function Go(q) is a minimum), 
which corresponds to a stable circular orbit of large radius in the unperturbed problem when u = 0. 
Relation (264 together with the equation of the second approximation 

determines the evolution of the average angular momentum of the sphere. The function Go(q) and the 
inverse function q(Go) when q < q* are positive and decrease monotonically. It follows from Eq. (27) 
taking (26) and the properties of the function b(q) into account, that the average angular momentum 
Go increases for the outer orbits of the sphere and decreases for the inner orbits. We can conclude from 
the form of the relation q(Go) that the radius increases monotonically for the outer orbits and decreases 
monotonically for the inner orbits. 

The results obtained using the approximate equations hold for ranges of variation of the radius of 
the quasi-circular orbits, with the exception of the neighbourhood of the point b, in which libration points 
occur, since in this case the procedure of averaging over the fast angular variable @ and expansion in 
series of one of the gravitational potentials turns out to be incorrect. 

b b 

100 -50 

50 -100 

0 
0.2 0.4 0.6 1 2 3 

-150 
4 9 

Fig. 2 
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In conclusion, we note that the nature of the evolution of the quasi-circular orbits of a viscoelastic 
sphere obtained above agrees with the theorem of the variation of the generalized energy in a uniformly 
rotating system of coordinates in which the attracting centres are fixed. 
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